

EAN code
SA3-02M: 8595188132374

Technical parameter	SA3-02M
Outputs	
Output:	2 x changeover $16 \mathrm{~A} / \mathrm{AC1}$
Switching voltage:	250 V AC1, 24 V DC
Switching load:	4000 VA/AC1, 384 W/DC
Surge current:	30 A ; max. 4 s. at duty cycle 10\%
Output relays separated from all internal circuits:	reinforced Insulation (Cat. Il surges by EN 60664-1)
Isolation between relay outputs RE1 and RE2:	reinforced Insulation (Cat. II surges by EN 60664-1)
Isolates. voltage open relay contact:	1 kV
Minimal switching current:	100 mA
Switching frequency/no load:	$1200 \mathrm{~min}^{-1}$
Switching frequency/rated load:	$6 \mathrm{~min}^{-1}$
Mechanical lifetime:	3×10^{7}
Electrical lifetime AC1:	0.7×10^{5}
Outputs indication:	2 x yellow LED
Communication	
Installation BUS:	BUS
Power supply	
Supply voltage / tolerance:	27 V DC, $-20 /+10$ \%
Dissipated power:	max. 4 W
Rated current:	50 mA (at 27V DC), from BUS
Status indication unit:	green LED RUN
Connection	
Terminal:	max. $2.5 \mathrm{~mm}^{2} / 1.5 \mathrm{~mm}^{2}$ with sleeve
Operating conditions	
Air humidity:	max. 80 \%
Operating temperature:	-20 to $+55^{\circ} \mathrm{C}$
Storing temperature:	-30 to $+70^{\circ} \mathrm{C}$
Protection degree:	device, IP40 mounting in the switchboard
Overvoltage category:	II.
Pollution degree:	2
Operation position:	any
Installation:	switchboard on DIN rail EN 60715
Design:	1-MODULE
Dimensions and weight	
Dimensions:	$90 \times 17.6 \times 64 \mathrm{~mm}$
Weight:	82 g

- Actuator SA3-02M is designed for switching two various appliance and loads with potentialless contact.
- SA3-02M is a switching actuator containing 2 independent relays with changeover potentialless contacts.
- Maximum load per contact is 16 A/4000 VA/AC1.
- Each of the two output contacts are individually controllable and addressable.
- Both relays are individually decorated input terminals, and therefore can switch various independent potentials.
- The actuator is designed for switching up to two various appliances and loads relay output (potentialless contact).
- Thanks to changeover contacts, it can be used to control one 230 V power (such as blinds, shutters or awnings) with appropriate bridging, the contacts can secure hardware blocking the possibility of simultaneous switching of the phase on both outputs, see example of connection.
- LEDs on the front panel signal the status of each output.
- Contact status of each relay can be changed separately and manually by control buttons on the front panel.
- Switching actuators SA3 are normally supplied in the option AgSnO_{2} contact material.
- SA3-02M in 1-MODULE version is designed for mounting into a switchboard, on DIN rail EN60715.

Connection

Minimum load			Minimum load		
Relay contact	mV	V／mA	Relay contact	mV	V／mA
AgSnO_{2}	1000	10／100	AgNi	300	5／10

GCR3－11，GCH3－31，GMR3－61，SA3－02B，SA3－06M，SA3－012M，WMR3－21

Type of load	$\longdiv { \square } - \widetilde { \square }$ AC1	－M－ AC2	－M－ AC3	$=\square=$	AC5a compensated	$\xrightarrow{(M)}$ AC5b	$\underset{\text { AC6a }}{\underset{3}{ } \mid \xi}$	man AC7b	AC12
Contact material AgSnO_{2} ，contact 8 A	250V／8A	250V／2．5A	250V／1．5A	230V／1．5A（345VA）	230V／ 1.5 A （345VA） till max output $\mathrm{C}=14 \mathrm{u} F$	250W	250V／4A	250V／1A	250V／1A
Type of load		\bar{m} AC14	\bar{m}好－1 AC15	DC1	－M－ DC3	－M－ DC5	\square	$\begin{gathered} \overline{ल n} \\ \text { DC13 } \end{gathered}$	\bar{m} DC14
Contact material $\mathrm{AgSnO}_{2^{\prime}}$ ，contact 8A	x	250V／3A	250V／3A	24V／8A	24V／3A	24V／2A	24V／8A	24V／1A	x

CU3－04M（RE7－RE－10），LBC3－02M，SA3－01B，SA3－02M，SA3－04M，SA3－022M（RE7－RE－10），EA3－022M（RE7－RE－10），JA3－018M（U／D1－U／D9）

Type of load	\square AC1	－M－ AC2	－M－ AC3	AC5a uncompensated	AC5a compensated	$\xrightarrow{(M)}$ AC5b	$\begin{gathered} 3 \mid \xi \\ A C 6 a \end{gathered}$	$\cdots m$ AC7b	AC12
Contact material AgSnO_{2} ，contact 16 A	250V／16A	250V／5A	250V／3A	$230 \mathrm{~V} / 3 \mathrm{~A}$（690VA）	$230 \mathrm{~V} / 3 \mathrm{~A}(690 \mathrm{VA})$ till max output $\mathrm{C}=14 \mathrm{uF}$	1500W	x	250V／3A	250V／10A
Type of load	$\zeta \mid \xi A$ AC13	\bar{m} AC14	\bar{m}市－ AC15	DC1	－M－ DC3	－M－ DC5	DC12	\bar{m} DC13	\bar{m} DC14
Contact material $\mathrm{AgSnO}_{2^{\prime}}$ contact 16A	250 ／ 6 A	250V／6A	250V／6A	24V／16A	24V／6A	24V／4A	24V／16A	24V／2A	24V／2A

SA3－02B／Ni＊，SA3－06M／Ni＊，SA3－012M／Ni＊

Type of load	$\begin{gathered} \underset{\cos \varphi \geq 0.95}{\square} \\ \text { AC1 } \end{gathered}$	$-$	$-$	\square AC5a uncompensated		$\xrightarrow{(M)}$ AC5b	$\begin{gathered} 3 \mid \xi \\ \text { AC6a } \end{gathered}$	\cdots AC7b	\square
Contact material AgNi contact 8A	250V／8A	250V／2．5A	250V／1．5A	230V／1．5A（345VA）	x	400W	x	250V／1．5A	250V／5A
Type of load	$\frac{3 \mid \xi A}{A C 13}$	\bar{m} AC14		DC1	－M－ DC3		DC12	\bar{m} DC13	\bar{m} DC14
Contact material AgNi contact 8A	250 ／3A	250V／3A	250V／3A	24V／8A	24V／3A	$24 \mathrm{~V} / 2 \mathrm{~A}$	24V／8A	24V／1A	$24 \mathrm{~V} / 1 \mathrm{~A}$
SA3－01B／Ni＊，SA3－06M／ Ni^{*} ，SA3－04M／Ni＊									
Type of load	$\begin{gathered} \square \\ \cos \varphi \geq 0.95 \\ \mathrm{AC1} \end{gathered}$	$-$	－M－ AC3	AC5a uncompensated	AC5a compensated	$\xrightarrow{(M)}$ AC5b	$\underset{\text { AC6a }}{3 \mid \xi}$	$\cdots m$ AC7b	$\xrightarrow{\square}$
Contact material AgNi contact 16A	250V／16A	250V／5A	250V／3A	$230 \mathrm{~V} / 3 \mathrm{~A}$（690VA）	x	800W	x	250V／3A	250V／10A
Type of load		\bar{m} AC14	\bar{m} 나－1， AC15	DC1	$-$	$-$	DC12	\bar{m} DC13	\bar{m} DC14
Contact material AgNi contact 16A	250 ／6A	250V／6A	250V／6A	24V／16A	24V／6A	24V／4A	24V／16A	24V／2A	$24 \mathrm{~V} / 2 \mathrm{~A}$

JA3－018M（U／D1－U／D9）， CU3－04M（RE1－RE6，OUT1－OUT2，RE11－RE16）， SA3－022M（RE1－RE6，OUT1－OUT2，RE11－RE16，SHUTTER）， EA3－022M（RE1－RE6，OUT1－OUT2，RE11－RE16，SHUTTER）， FA3－612M（FAN1－FAN3，RE）				
Type of load	$\longdiv { \operatorname { c o s } _ { \varphi \geq 0 . 9 5 } }$ AC1	$-$ AC3	\bar{m}市－1 AC15	\square
Contact material AgNi contact 6A	250V／6A	230V／0．8A	230V／1．3A	$\begin{gathered} 30 \mathrm{~V} / 3 \mathrm{~A} \\ 110 \mathrm{~V} / 0.2 \mathrm{~A} \\ 220 \mathrm{~V} / 0.12 \mathrm{~A} \end{gathered}$

Demonstrated symbols are informative．
＊Products with AgNi contact only up on request for extra charge．

